ml_pr_vis¶
-
datavis.ml_pr_vis.
clean_csv
(csv_file)¶ Convert dictionary from directory keys to multi-level dictionary
Parameters: csv_file (dict) – Dictionary with directory keys Returns: out_dict, with patient and directory_number keys
-
datavis.ml_pr_vis.
make_emotion_data
(emotion, short_patient)¶ Loads emotions and AUs from au_emotes.txt and spits out training/testing data for classification
Parameters: :returns au training/testing data, emotion training/testing
-
datavis.ml_pr_vis.
thresh_calc
(out_q, short_patient, thresh)¶ Calculate, based on probabilities in scores dict, confusion matrix for each emotion
Parameters:
-
datavis.ml_pr_vis.
use_classifier
(classifier, au_train, au_test, target_train, target_test)¶ Fit the classifier on the training AUs and predict emotions
Parameters: - classifier – Classifier
- au_train – Training action units
- au_test – Testing action units
- target_train – Training emotions
- target_test – Testing emotions
Returns: Testing emotions, predicted probabilities
-
datavis.ml_pr_vis.
validate_thresh_dict
(thresh_dict)¶ Helper function to validate that the thresh_dict has the correct ratio of true_post, false_pos, etc
Parameters: thresh_dict (dict) – Dict to validate Raises: AssertionError
-
datavis.ml_pr_vis.
vis
(short_patient, thresh_file=None)¶ Visualize patient classification results for different classifiers
Parameters: :returns None, saves output in the format short_patient + ‘_{0}_pr_with_ML_and_pose’.format(emotion)